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If we are eventually to understand
the capability of higher organisms for
perceptual recognition, generalization,
recall, and thinking, we must first
have answers to three fundamental
questions:

1. How is information about the
physical world sensed, or detected, by
the biological system?

2. In what form is
stored, or remembered?

3. How does information contained
in storage, or in memory, influence
recognition and behavior?

information

The first of these questions is in the
province of sensory physiology, and is
the only one for which appreciable
understanding has been achieved.
This article will be concerned pri-
marily with the second and third
questions, which are still subject to a
vast amount of speculation, and where
the few relevant facts currently sup-
plied by neurophysiology have not yet
been integrated into an acceptable
theory.

With regard to the second question,
two alternative positions have been
maintained. The first suggests that
storage of sensory information is in
the form of coded representations or
images, with some sort of one-to-one
mapping between the sensory stimulus

1 The development of this theory has been
carried out at the Cornell Aeronautical Lab-
oratory, Inc., under the sponsorship of the
Office of Naval Research, Contract Nonr-
2381(00). This article is primarily an adap-
tation of material reported in Ref. 15, which
constitutes the first full report on the program.

and the stored pattern. According to
this hypothesis, if one understood the
code or "‘wiring diagram”’ of the nerv-
ous system, one should, in principle,
be able to discover exactly what an
organism remembers by reconstruct-
ing the original sensory patterns from
the ‘‘memory traces’’ which they have
left, much as we might develop a
photographic negative, or translate
the pattern of electrical charges in the
“memory” of a digital computer.
This hypothesis is appealing in its
simplicity and ready intelligibility,
and a large family of theoretical brain
models has been developed around the
idea of a coded, representational mem-
ory (2, 3,9, 14). The alternative ap-
proach, which stems from the tradi-
tion of British empiricism, hazards the
guess that the images of stimuli may
never really be recorded at all, and
that the central nervous system
simply acts as an intricate switching
network, where retention takes the
form of new connections, or pathways,
between centers of activity. Inmany
of the more recent developments of
this position (Hebb's *‘cell assembly,”
and Hull's “cortical anticipatory goal
response,” for example) the ‘'re-
sponses’” which are associated to
stimuli may be entirely contained
within the CNS itself. In this case
the response represents an ‘‘idea’
rather than an action. The impor-
tant feature of this approach is that
there is never any simple mapping of
the stimulus into memory, according
to some code which would permit its
later reconstruction. Whatever in-
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formation is retained must somehow
be stored as a preference for a par-
ticular response; i.e., the information
is contained in connections or associa-
tions rather than topographic repre-
sentations. (The term response, for
the remainder of this presentation,
should be understood to mean any
distinguishable state of the organism,
which may or may not involve ex-
ternally detectable muscular activity.
The activation of some nucleus of cells
in the central nervous system, for
example, can constitute a response,
according to this definition.)

Corresponding to these two posi-
tions on the method of information
retention, there exist two hypotheses
with regard to the third question, the
manner in which stored information
exerts its influence on current activity.
The “coded memory theorists” are
forced to conclude that recognition of
any stimulus involves the matching
or systematic comparison of the con-
tents of storage with incoming sen-
sory patterns, in order to determine
whether the current stimulus has been
seen before, and to determine the ap-
propriate response from the organism.
The theorists in the empiricist tradi-
tion, on the other hand, have essen-
tially combined the answer to the
third question with their answer to the
second : since the stored information
takes the form of new connections, or
transmission channels in the nervous
system (or the creation of conditions
which are functionally equivalent to
new connections), it follows that the
new stimuli will make use of these new
pathways which have been created,
automatically activating the appro-
priate response without requiring any
separate process for their recognition
or identification.

The theory to be presented here
takes the empiricist, or ‘‘connectionist’’
position with regard to these ques-
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tions. The theory has been developed
for a hypothetical nervous system, or
machine, called a perceptron. The
perceptron is designed to illustrate
some of the fundamental properties of
intelligent systems in general, without
becoming too deeply enmeshed in the
special, and frequently unknown, con-
ditions which hold for particular bio-
logical organisms. The analogy be-
tween the perceptron and biological
systems should be readily apparent to
the reader.

During the last few decades, the
development of symbolic logic, digital
computers, and switching theory has
impressed many theorists with the
functional similarity between a neuron
and the simple on-off units of which
computers are constructed, and has
provided the analytical methods nec-
essary for representing highly complex
logical functions in terms of such
elements. The result has been a
profusion of brain models which
amount simply to logical contrivances
for performing particular algorithms
(representing ‘‘recall,” stimulus com-
parison, transformation, and various
kinds of analysis) in response to
sequences of stimuli—e.g., Rashevsky
(14), McCulloch (10), McCulloch &
Pitts (11), Culbertson (2), Kleene
(8), and Minsky (13). A relatively
small number of theorists, like Ashby
(1) and von Neumann (17, 18), have
been concerned with the problems of
how an imperfect neural network,
containing many random connections,
can be made to perform reliably those
functions which might be represented
by idealized wiring diagrams. Un-
fortunately, the language of symbolic
logic and Boolean algebra is less well
suited for such investigations. The
need for a suitable language for the
mathematical analysis of events in
systems where only the gross organ-
ization can be characterized, and. the
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precise structure is unknown, has led
the author to formulate the current
model in terms of probability theory
rather than symbolic logic.

The theorists referred to above were
chiefly concerned with the question of
how such functions as perception and
recall might be achieved by a deter-
ministic physical system of any sort,
rather than how this is actually done
by the brain. The models which have
been produced all fail in some im-
portant respects (absence of equi-
potentiality, lack of neuroeconomy,
excessive specificity of connections
and synchronization requirements,
unrealistic specificity of stimuli suffi-
cient for cell firing, postulation of
variables or functional features with
no known neurological correlates, etc.)
to correspond to a biological system.
The proponents of this line of ap-
proach have maintained that, once it
has been shown how a physical
system of any variety might be made
to perceive and recognize stimuli, or
perform other brainlike functions, it
would require only a refinement or
modification of existing principles to
understand the working of a more
realistic nervous system, and to elim-
inate the shortcomings mentioned
above. The writer takes the position,
on the other hand, that these short-
comings are such that a mere refine-
ment or improvement of the principles
already suggested can never account
for biological intelligence; a difference
in principle is clearly indicated. The
theory of statistical separability (Cf.
15), which is to be summarized here,
appears to offer a solution in principle
to all of these difficulties.

Those theorists—Hebb (7), Milner
(12), Eccles (4), Hayek (6)—who
have been more directly concerned
with the biological nervous system
and its activity in a natural environ-
ment, rather than with formally anal-
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ogous machines, have generally been
less exact in their formulations and far
from rigorous in their analysis, so that
it is frequently hard to assess whether
or not the systems that they describe
could actually work in a realistic nerv-
ous system, and what the necessary
and sufficient conditions might be.
Here again, the lack of an analytic
language comparable in proficiency to
the Boolean algebra of the network
analysts has been one of the main
obstacles. The contributions of this
group should perhaps be considered as
suggestions of what to look for and
investigate, rather than as finished
theoretical systems in their own right.
Seen from this viewpoint, the most
suggestive work, from the standpoint
of the following theory, is that of
Hebb and Hayek.

The position, elaborated by Hebb
(7), Hayek (6), Uttley (16), and
Ashby (1), in particular, upon which
the theory of the perceptron is based,
can be summarized by the following
assumptions:

1. The physical connections of the
nervous system which are involved in
learning and recognition are not iden-
tical from one organism to another.
At birth, the construction of the most
important networks is largely random,
subject to a minimum number of
genetic constraints.

2. The original system of connected
cells is capable of a certain amount of
plasticity; after a period of neural
activity, the probability that a stim-
ulus applied to one set of cells will
cause a response in some other set is
likely to change, due to some rela-
tively long-lasting changes in the
neurons themselves.

3. Through exposure to a large
sample of stimuli, those which are
most ‘‘similar” (in some sense which
must be defined in terms of the
particular physical system) will tend
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to form pathways to the same sets of
responding cells. Those which are
markedly ‘“‘dissimilar” will tend to
develop connections to different sets of
responding cells.

4. The application of positive and/
or negative reinforcement (or stimuli
which serve this function) may facil-
itate or hinder whatever formation of
connections is currently in progress.

5. Stmdlarity, in such a system, is
represented at some level of the nerv-
ous system by a tendency of similar
stimuli to activate the same sets of
cells., Similarity is not a necessary
attribute of particular formal or geo-
metrical classes of stimuli, but de-
pends on the physical organization of
the perceiving system, an organiza-
tion which evolves through interaction
with a given environment. The
structure of the system, as well as the
ecology of the stimulus-environment,
will affect, and will largely determine,
the classes of ‘‘things’ into which the
perceptual world is divided.

THE ORGANIZATION OF A PERCEPTRON

The organization of a typical photo-
perceptron (a perceptron responding
to optical patterns as stimuli) is shown
in Fig. 1. The rules of its organiza-
tion are as follows:

1. Stimuli impinge on a retina of
sensory units (S-points), which are
assumed to respond on an all-or-
nothing basis, in some models, or with
a pulse amplitude or frequency pro-
portional to the stimulus intensity, in
other models. In the models con-
sidered here, an all-or-nothing re-
sponse will be assumed.

2. Impulses are transmitted to a set
of association cells (A-units) in a
“projection area” (Ay). This pro-
jection area may be omitted in some
models, where the retina is connected
directly to the association area (Ar).
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Fi1G. 1.

Organization of a perceptron.

The cells in the projection area each
receive a number of connections from
the sensory points. The set of S-
points transmitting impulses to a par-
ticular A-unit will be called the origin
points of that A-unit. These origin
points may be either excitatory or in-
hibitory in their effect on the A-unit.
If the algebraic sum of excitatory and
inhibitory impulse intensities is equal
to or greater than the threshold (8) of
the A-unit, then the A-unit fires, again
on an all-or-nothing basis (or, in some
models, which will not be considered
here, with a frequency which depends
on the net value of the impulses
received). The origin points of the
A-units in the projection area tend to
be clustered or focalized, about some
central point, corresponding to each
A-unit. The number of origin points
falls off exponentially as the retinal
distance from the central point for
the A-unit in question increases.
(Such a distribution seems to be sup-
ported by physiological evidence, and
serves an important functional pur-
pose in contour detection.)

3. Between the projection area and
the association area (Arr), connections
are assumed to be random. That is,
each A-unit in the Ay set receives
some number of fibers from origin
points in the Ar set, but these origin
points are scattered at random
throughout the projection area.
Apart from their connection distri-
bution, the Ajp units are identical
with the Ar units, and respond under
similar conditions.

4. The “responses,” Ry, Ry, . . .,
R, are cells (or sets of cells) which
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respond in much the same fashion as
the A-units. Each response has a
typically large number of origin points
located at random in the Ayrset. The
set of A-units transmitting impulses
to a particular response will be called
the source-set for that response.
(The source-set of a response is iden-
tical to its set of origin points in the
A-system.) The arrows in Fig. 1
indicate the direction of transmission
through the network. Note that up
to A1 all connections are forward, and
there is no feedback. When we come
to the last set of connections, between
Ay and the R-units, connections are
established in both directions. The
rule governing feedback connections,
in most models of the perceptron, can
be either of the following alternatives:

() Each response has excitatory
feedback connections to the cells in its
own source-set, or

(b) Each response has inhibitory
feedback connections to the comple-
ment of its own source-set (i.e., it tends
to prohibit activity in any association
cells which do not transmit to it).

The first of these rules seems more
plausible anatomically, since the R-
units might be located in the same
cortical area as their respective source-
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ceptron¥ (shading shows active sets for Ry
response).

F. ROSENBLATT

sets, making mutual excitation be-
tween the R-units and the A-units of
the appropriate source-set highly
probable, The alternative rule (b)
leads to a more readily analyzed sys-
tem, however, and will therefore be
assumed for most of the systems to be
evaluated here.

Figure 2 shows the organization of
a simplified perceptron, which affords
a convenient entry into the theory of
statistical separability. After the
theory has been developed for this
simplified model, we will be in a better
position to discuss the advantages of
the system in Fig. 1. The feedback
connections shown in Fig, 2 are in-
hibitory, and go to the complement
of the source-set for the response from
which they originate; consequently,
this system is organized according to
Rule b, above. The system shown
here has only three stages, the first
association stage having been elim-
inated. Each A-unit has a set of
randomly located origin points in the
retina. Such a system will form simi-
larity concepts on the basis of coin-
cident areas of stimuli, rather than by
the similarity of contours or outlines.
While such a system is at a disadvan-
tage in many discrimination experi-
ments, its capability is still quite
impressive, as will be demonstrated
presently. The system shown in Fig.
2 has only two responses, but there is
clearly no limit on the number that
might be included.

The responses in a system organized
in this fashion are mutually exclusive.
If R; occurs, it will tend to inhibit R.,
and will also inhibit the source-set for
R,. Likewise, if Ry should occur, it
will tend to inhibit R,. If the total
impulse received from all the A-units
in one source-set is stronger or more
frequent than the impulse received
by the alternative (antagonistic) re-
sponse, then the first response will
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tend to gain an advantage over the
other, and will be the one which
occurs. If such a system is to be
capable of learning, then it must be
possible to modify the A-units or their
connections in such a way that stimuli
of one class will tend to evoke a
stronger impulse in the R, source-set
than in the R, source-set, while
stimuli of another (dissimilar) class
will tend to evoke a'stronger impulse
in the R; source-set than in the R,
source-set.

It will be assumed that the impulses
delivered by each A-unit can be
characterized by a value, V, which
may be an amplitude, frequency,
latency, or probability of completing
transmission. If an A-unit has a high
value, then all of its output impulses
are considered to be more effective,
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more potent, or more likely to arrive
at their endbulbs than impulses from
an A-unit with a lower value. The
value of an A-unit is considered to be
a fairly stable characteristic, probably
depending on the metabolic condition
of the cell and the cell membrane, but
it is not absolutely constant. It is
assumed that, in general, periods of
activity tend to increase a cell's value,
while the value may decay (in some
models) with inactivity. The most
interesting models are those in which
cells are assumed to compete for met-
abolic materials, the more active cells
gaining at the expense of the less
active cells. In such a system, if
there is no activity, all cells will tend
to remain in a relatively constant
condition, and (regardless of activity)
the net value of the system, taken in

TABLE 1
ComrarisoN OF LoGicAL CHARACTERISTICS OF «, 3, AND y SYSTEMS
a-System B-System y-System
(Uncompensated (Constant Feed (Paragitic Gain
Gain System) System)} System)
Total value-gain of source set per rein-
forcement N, K 0
AV for A-units active for 1 unit of time +1 K/N,, +1
AV for inactive A-units outside of domi-
nant set 0 K/Na, 0
. o . . — N ar
AV for inactive A-units of dominant set 0 0 —
N A,-—'N ay
Mean value of A-system Increases with number | Increases with Constant
of reinforcements time
Difference between mean values of | Proportional to differ- 0 0
source-gets ences of reinforce-
ment frequency
(Rtagy—102,)

Note: In the 8 and v systems, the total value-change for any A-unit will be the sum of the AV’s

for all source-sets of which it is a member.

N,, = Number of active units in source-set
N4, = Total number of units in source-set
#,,, = Number of stimuli associated to response r;

K= Arbitrary constant
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its entirety, will remain constant at
all times. Three types of systems,
which differ in their value dynamics,
have been investigated quantitatively.
Their principal logical features are
compared in Table 1. In the alpha
system, an active cell simply gains an
increment of value for every impulse,
and holds this gain indefinitely. In
the beta system, each source-set is
allowed a certain constant rate of gain,
the increments being apportioned
among the cells of the source-set in
proportion to their activity. In the
gamma system, active cells gain in
value at the expense of the inactive
cells of their source-set, so that the
total value of a source-set is always
constant.

For purposes of analysis, it is con-
venient to distinguish two phases in
the response of the system to a stim-
ulus (Fig. 3). In the predominant
phase, some proportion of A-units
(represented by solid dots in the
figure) responds to the stimulus, but
the R-units are still inactive. This
phase is transient, and quickly gives
way to the postdominant phase, in
which one of the responses becomes
active, inhibiting activity in the com-

Fi1G. 3A. Predominant phase,

Inhibitory connections
are not shown,

Solid black units are active,

A-SYSTEM

NETINA

F16. 3B. Postdominant phase.

Dominant subset
suppresses rival sets. Inhibitory connections shown

only for Ri.

F1c. 3. Phases of response to a stimulus,
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plement of its own source-set, and
thus preventing the occurrence of any
alternative response. The response
which happens to become dominant is
initially random, but if the A-units are
reinforced (i.e., if the active units are
allowed to gain in value), then when
the same stimulus is presented again
at a later time, the same response will
have a stronger tendency to recur, and
learning can be said to have taken
place.

ANALYSIS OF THE PREDOMINANT
PHASE

The perceptrons considered here
will always assume a fixed threshold,
8, for the activation of the A-units.
Such a system will be called a fixed-
threshold model, in contrast to a con-
tinuous transducer model, where the
response of the A-unit is some con-
tinuous function of the impinging
stimulus energy.

In order to predict the learning
curves of a fixed-threshold perceptron,
two variables have been found to be
of primary importance. They are
defined as follows:

P, = the expected proportion of A-
units activated by a stimulus of a
given size,

P, = the conditional probability
that an A-unit which responds to a
given stimulus, S;, will also respond
to another given stimulus, S,.

It can be shown (Rosenblatt, 15) that
as the size of the retina is increased,
the number of S-points (N,) quickly
ceases to be a significant parameter,
and the values of P, and P, approach
the value that they would have for a
retina with infinitely many points.
For a large retina, therefore, the
equations are as follows:
min

z  (y e—~0)

Po=3% 2 Ples) M

e=0 i=0
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where

Pes = (1) R0 - B
X ({) Ri(1 — Ryv

proportion of S-points activated
by the stimulus

x = number of excitatory connec-

tions to each A-unit

and

R

y = number of inhibitory connec-
tions to each A-unit
8 = threshold of A-units.

(The quantities e and ¢ are the ex-
citatory and inhibitory components of
the excitation received by the A-unit
from the stimulus. If the algebraic
sum a = ¢ + ¢ is equal to or greater
than 4, the A-unit is assumed to re-
spond.)

1 y 2
P=nL.2 kL

a e=f i=e—08 I,

2

I
z—e8 Yy—1i
Z ZP(e:irleyZ'irgﬂ’gi) (2)
2o=0 g;=0
(e—i—let+li+g.—gi2>0)
where

P(ed,beylinge,gs)

- <’Z)Re(1 — R)=

)R (1 — Ry

X )Ll« 1 — L)t

%

X )Gw(l — G)zee

)

&

(
(
(-0
.
.

X Y- )Gw(l — @)y

UQ
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and

L = proportion of the S-points illumi-
nated by the first stimulus, Sy,
which are not illuminated by
S,

G = proportion of the residual S-set
(left over from the first stim-
ulus) which is included in the
second stimulus (Ss).

The quantities R, L, and G specify the
two stimuli and their retinal overlap.
I, and I; are, respectively, the numbers
of excitatory and inhibitory origin
points “lost” by the A-unit when
stimulus S; is replaced by S,; g, and
g; are the numbers of excitatory and
inhibitory origin points ‘‘gained”
when stimulus S; is replaced by S..
The summations in Equation 2 are
between the limits indicated, subject
to the side condition ¢ — ¢ — [, + I,
+g,— g 2 6.

Some of the most important char-
acteristics of P, are illustrated in Fig.
4, which shows P, as a function of the
retinal area illuminated (R). Note
that P, can be reduced in magnitude
by either increasing the threshold, 6,
or by increasing the proportion of in-
hibitory connections (¥). A compari-
son of Fig. 4b and 4c shows that if the
excitation is about equal to the inhibi-
tion, the curves for P, as a function
of R are flattened out, so that there is
little variation in P, for stimuli of
different sizes. This fact is of great
importance for systems which require
P, to be close to an optimum value in
order to perform properly.

The behavior of P, is illustrated in
Fig. 5and 6. The curvesin Fig. 5 can
be compared with those for P, in Fig.
4. Note that as the threshold is in-
creased, there is an even sharper re-
duction in the value of P, than was the
case with P,. P.also decreases as the
proportion of inhibitory connections
increases, as does P,. Fig. 5, which is
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F1G. 4. P, as function of retinal area illuminated.

calculated for nonoverlapping stimuli,
illustrates the fact that P, remains
greater than zero even when the stim-
uli are completely dlS]LlnCt and illumi-
nate no retinal points in common. In
Fig. 6, the effect of varying amounts
of overlap between the stimuli is
shown. In all cases, the value of P,
goes to unity as the stimuli approach
perfect identity. For smaller stimuli
(broken line curves), the value of P,
is lower than for large stimuli. Simi-
larly, the value is less for high thresh-
olds than for low thresholds. The
minimum value of P, will be equal to

Popin = 1 = L)*(1 = G). (3)

In Fig. 6, P.,;, corresponds to the
curve for 8 = 10. Note that under
these conditions the probability that
the A-unit responds to both stimuli
(P.) is practically zero, except for
stimuli which are quite close to
identity. This condition can be of
considerable help in discrimination
learning.

MATHEMATICAL ANALYSIS
OF LEARNING IN THE
PERCEPTRON

The response of the perceptron in
the predominant phase, where some
fraction of the A-units (scattered
throughout the system) responds to
the stimulus, quickly gives way to the
postdominant response, in which ac-
tivity is limited to a single source-set,
the other sets being suppressed. Two
possible systems have been studied for
the determination of the ‘“‘dominant”
response, in the postdominant phase.
In one (the mean-discriminating sys-
tem, or u-system), the response whose
inputs have the greatest mean value
responds first, gaining a slight advan-
tage over the others, so that it quickly
becomes dominant. In the second
case (the sum-discriminating system,
or Z-system), the response whose in-
puts have the greatest net value gains
an advantage. In most cases, sys-
tems which respond to mean values
have an advantage over systems which
respond to sums, since the means are
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Fic. 5. P, asa function of R,
for nonoverlapping stimuli.

less influenced by random wvariations
in P, from one source-set to another.
In the case of the y-system (see Table
1), however, the performance of
the p-system and Z-system become
identical.

We have indicated that the percep-
tron is expected to learn, or to form
associations, as a result of the changes
in value that occur as a result of the
activity of the association cells. In
evaluating this learning, one of two
types of hypothetical experiments can
be considered. In the first case, the
perceptron is exposed to some series
of stimulus patterns (which might be
presented in random positions on the
retina) and is ‘“forced”’ to give the
desired response in each case. (This
forcing of responses is assumed to be
a prerogative of the experimenter. In
experiments intended to evaluate
trial-and-error learning, with more
sophisticated perceptrons, the experi-
menter does not force the system to
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respond in the desired fashion, but
merely applies positive reinforcement
when the response happens to be cor-
rect, and negative reinforcement when
the response is wrong.) Inevaluating
the learning which has taken place
during this ‘learning series,’” the
perceptron is assumed to be “frozen”
in its current condition, no further
value changes being allowed, and the
same series of stimuli is presented
again in precisely the same fashion, so
that the stimuli fall on identical posi-
tions on the retina. The probability
that the perceptron will show a bias
towards the ‘“‘correct” response (the
one which has been previously rein-
forced during the learning series) in
preference to any given alternative
response is called P,, the probability
of correct choice of response between
two alternatives.

In the second type of experiment, a
learning series is presented exactly as
before, but instead of evaluating the
perceptron’s performance using the
same series of stimuli which were
shown before, a new series is pre-
sented, in which stimuli may be drawn
from the same classes that were previ-
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ously experienced, but are not neces-
sarily identical. This new test series
is assumed to be composed of stimuli
projected onto random retinal posi-
tions, which are chosen independently
of the positions selected for the learn-
ing series. The stimuli of the test
series may also differ in size or rota-
tional position from the stimuli which
were previously experienced. In this
case, we are interested in the prob-
ability that the perceptron will give
the correct response for the class of
stimuli which is represented, regard-
less of whether the particular stimulus
has been seen before or not. This
probability is called P,, the prob-
ability of correct generalization. As
with P,, P, is actually the probability
that a bias will be found in favor of the
proper response rather than any one
alternative; only one pair of responses
at a time is considered, and the fact
that the response bias is correct in one
pair does not mean that there may
not be other pairs in which the bias
favors the wrong response. The prob-
ability that the correct response will
be preferred over all alternatives is
designated Pg or Pg.

In all cases investigated, a single
general equation gives a close ap-
proximation to P, and P,, if the ap-
propriate constants are substituted.
This equation is of the form:

P =P(Na >0)¢(Z) 4
where
P(Ng >0)=1— (1 — P,)Ne
¢(Z) = normal curve integral
from — « to Z

and
Ci1Ms, + Co

= ————’\/—_‘:;.
Cats,> + Catl,

If Ryis the “correct’ response, and R,
is the alternative response under con-
sideration, Equation 4 is the prob-
ability that R, will be preferred over
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R: after #,, stimuli have been shown
for each of the two responses, during
the learning period. N, is the number
of ‘“‘effective’” A-units in each source-
set; that is, the number of A-units in
either source-set which are not con-
nected in common to both responses.
Those units which are connected in
common contribute equally to both
sides of the value balance, and con-
sequently do not affect the net bias
towards one response or the other.
N,, is the number of active units in a
source-set, which respond to the test
stimulus, S;-P(N,, > 0) is the prob-
ability that at least one of the N,
effective units in the source-set of the
correct response (designated, by con-
vention, as the Ri response) will be
activated by the test stimulus, S..

In the case of P,, the constant ¢, is
always equal to zero, the other three
constants being the same as for P,.
The wvalues of the four constants
depend on the parameters of the
physical nerve net (the perceptron)
and also on the organization of the
stimulus environment.

The simplest cases to analyze are
those in which the perceptron is shown
stimuli drawn from an ‘‘ideal environ-
ment,” consisting of randomly placed
points of illumination, where there is
no attempt to classify stimuli accord-
ing to intrinsic similarity. Thus, in a
typical learning experiment, we might
show the perceptron 1,000 stimuli
made up of random collections of
illuminated retinal points, and we
might arbitrarily reinforce R; as the
“correct’”’ response for the first 500
of these, and R, for the remaining 500.
This environment is ‘‘ideal” only in
the sense that we speak of an ideal gas
in physics; it is a convenient artifact
for purposes of analysis, and does not
lead to the best performance from the
perceptron. In the ideal environ-
ment situation, the constant ¢; is
always equal to zero, so that, in the
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case of P, (where ¢; is also zero), the
value of Z will be zero, and P, can
never be any better than the random
expectation of 0.5. The evaluation
of P, for these conditions, however,
throws some interesting light on the
differences between the alpha, beta,
and gamma systems (Table 1).

First consider the alpha system,
which has the simplest dynamics of
the three. In this system, whenever
an A-unit is active for one unit of
time, it gains one unit of value. We
will assume an experiment, initially,
in which N,, (the number of stimuli
associated to each response) is con-
stant for all responses. In this case,
for the sum system,
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where w = the fraction of responses
connected to each A-unit. If the
source-sets are disjunct, 1/Ng,
where N is the number of responses
in the system. For the u-system,

c, = 0

Cy = (1 - Pa)Ne

¢ = 0 (6)
Cq = 2w

The reduction of ¢; to zero gives the
u-system a definite advantage over the
Zsystem. Typical learning curves
for these systems are compared in
Fig. 7 and 8. Figure 9 shows the
effect of variations in P, upon the
performance of the system.

If 7., instead of being fixed, is

=0 P treated as a random variable, so that
¢ = (1 — Pa)N, (5) the number of stimuli associated to
¢y = 2Paw each response is drawn separately
s =0 from some distribution, then the per-
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formance of the a-system is consider-
ably poorer than the above equations

indicate. Under these conditions, the
constants for the y-system are
1 = 0
Cy = 1 — Pa,
(wNgp — 1)?
— 22| A8 7
cs ZPU,Q[ N, — 2 +1 (7
_2(1 — Py)Ng
“= (1 —w)N4
where
q = ratio of one, tO 7,
Nz = number of responses in the sys-
tem
N4 = number of A-units in the sys-
tem
w, = proportion of A-units common
to R; and Ra.

For this equation (and any others in
which #,, is treated as a random
variable), it is necessary to define #,,
in' Equation 4 as the expected value
of fthis variable, over the set of all
responses.

(For P, = .07, w. = 0.

*

Ideal environment assumed.)

For the §-system, there is an even
greater deficit in performance, due to
the fact that the net value continues
to grow regardless of what happens
to the system. The large net values
of the subsets activated by a stimulus
tend to amplify small statistical differ-
ences, causing an unreliable perform-
ance. The constants in this case
(again for the u-system) are

cp = 0
c2= (1 — PN, (8)
¢3 = 2(PNoquNg?)?

Cy = 2(1 —-— Pa)wNRNe

In both the alpha and beta systems,
performance will be poorer for the
sum-discriminating model than for the
mean-discriminating case. In the
gamma-system, however, it can be
shown that Py zy = Py ;i.e., it makes
no difference in performance whether
the Z-system or u-system is used.
Moreover, the constants for the y-
system, with variable #;,,, are identical
to the constants for the alpha u-sys-
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tem, with #,, fixed (Equation 6). demonstrates the advantage of the
The performance of the three systems y-system.

is compared in Fig. 10, which clearly Let us now replace the ‘‘ideal en-
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vironment’’ assumptions with a model
for a ‘‘differentiated environment,” in
which several distinguishable classes
of stimuli are present (such as squares,
circles, and triangles, or the letters of
the alphabet). If we then design an
experiment in which the stimuli asso-
ciated to each response are drawn from
a different class, then the learning
curves of the perceptron are drasti-
cally altered. The most important
difference is that the constant ¢; (the
coefficient of #,, in the numerator of Z)
is no longer equal to zero, so that
Equation 4 now has a nonrandom
asymptote. Moreover, in the form
for P, (the probability of correct
generalization), where ¢, = 0, the
quantity Z remains greater than zero,
and P, actually approaches the same
asymptote as P,. Thus the equation
for the perceptron’s performance after
infinite experience with each class of
stimuli is identical for P, and P,:

Pry = Py = [1 — (1 — Po)¥]
e

This means that i the limit it makes
no difference whether the perceptron has
seen a particular test stimulus before or
not; if the stimuli are drawn from a
differentiated environment, the perform-
ance will be equally good in either case.

In order to evaluate the perform-
ance of the system in a differentiated
environment, it is necessary to define
the quantity P.,s. This quantity is
interpreted as the expected value of
P, between pairs of stimuli drawn at
random from classes « and 8. In
particular, P,y is the expected value
of P, between members of the same
class, and P,y, is the expected value of
P, between an S; stimulus drawn from
Class 1 and an S, stimulus drawn from
Class 2. P, is the expected value of
P, between members of Class 1 and
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stimuli drawn at random from all
other classes in the environment.

If Puy; > Po> Py, the limiting
performance of the perceptron (P,,)
will be better than chance, and learn-
ing of some response, R,, as the proper
“generalization response” for mem-
bers of Class 1 should eventually
occur. If the above inequality is not
met, then improvement over chance
performance may not occur, and the
Class 2 response is likely to occur
instead. It can be shown (15) that
for most simple geometrical forms,
which we ordinarily regard as “‘simi-
lar,” the required inequality can be
met, if the parameters of the system
are properly chosen.

The equation for P,, for the sum-
discriminating version of an a-percep-
tron, in a differentiated environment
where 7, is fixed for all responses, will
have the following expressions for the
four coefficients:

¢1=PoNo(Pory— Pers) )
62=.PaNg(1 '—Pcu)
3= Z Pa(l_Pa)Ne
r=1,2
X [Pl +0s (Pory)
+0(Perr) + (@Ng—1)?
X (Pclz+°'s2(Pclz)
+‘7'J'2(Por:c))+2(wNR_1>
(Pcerclx)]+Pu2N82
X[ (Pers) + (wNp—1)?
KXo (Peys) +2(wNr—1)e]
Cs™= Z PaNe[Pclr'_Pclrz
r==1,2
"“0'32(Pclr) —0'7'2<P01r)
+ (“’NR'— 1) (Pclz—Ple2
—‘7]2(Pcl:c>)] J

(10)

where

o2(P.y,) and o2(P.,) represent the
variance of P.ir and P,;, meas-
ured over the set of possible
test stimuli, .S;, and
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0#(Pe,) and o2(P.y,) represent the
variance of P, and P,, meas-
ured over the set of all A-units,
a;.

covariance of P P.,, which is
assumed to be negligible.

€

The variances which appear in these
expressions have not yielded, thus far,
to a precise analysis, and can be
treated as empirical variables to be
determined for the classes of stimuli
in question. If the sigma is set equal
to half the expected value of the vari-
able, in each case, a conservative
estimate can be obtained. When the
stimuli of a given class are all of the
same shape, and uniformly distributed
over the retina, the subscript s vari-
ances are equal to zero. Py will be
represented by the same set of coeffi-
cients, except for ¢, which is equal to
zero, as usual.

For the mean-discriminating sys-
tem, the coefficients are:
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1= (Pcu"Pclz) )
62=(1“Pc11)

1 1
63=T=-zl:,2 [Pa(Ne“l)_Ne_l]

X[o#(Pey)+ (wNp—1)?
XG'J'2 (Pclx):H' [0'32 (PCIr)

+@Ne— 102 Papl[ MV

4= Z

r=1,2

- (702 (Pclr) - Uj2 (Pclr)

+ (wNR— 1) (Pclz"—Pclzz
- 0'32 (Pclx) - Ufz (Pcla:))] J

Some covariance terms, which are
considered negligible, have been omit-
ted here.

A set of typical learning curves for
the differentiated environment model
is shown in Fig. 11, for the mean-
discriminating system. The param-
eters are based on measurements for a
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square-circle discrimination problem.
Note that the curves for P, and P,
both approach the same asymptotes,
as predicted. The wvalues of these
asymptotes can be obtained by sub-
stituting the proper coefficients in
Equation 9. As the number of asso-
ciation cells in the system increases,
the asymptotic learning limit rapidly
approaches unity, so that for a system
of several thousand cells, the errors in
performance should be negligible on a
problem as simple as the one illus-
trated here.

As the number of responses in the
system increases, the performance be-
comes progressively poorer, if every
response is made mutually exclusive
of all alternatives. One method of
avoiding this deterioration (described
in detail in Rosenblatt, 15) is through
the binary coding of responses. In
this case, instead of representing 100
different stimulus patterns by 100
distinct, mutually exclusive responses,
a limited number of discriminating
features is found, each of which can be
independently recognized as being
present or absent, and consequently
can be represented by a single pair of
mutually exclusive responses. Given
an ideal set of binary characteristics
(such as dark, light; tall, short;
straight, curved; etc.), 100 stimulus
classes could be distinguished by the
proper configuration of only seven
response pairs. In a further modifica-
tion of the system, a single response is
capable of denoting by its activity or
inactivity the presence or absence of
each binary characteristic. The effi-
ciency of such coding depends on the
number of independently recognizable
“earmarks” that can be found to
differentiate stimuli. If the stimulus
can be identified only in its entirety
and is not amenable to such analysis,
then ultimately a separate binary
response pair, or bit, is required to
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denote the presence or absence of each
stimulus class (e.g., “dog” or ‘not
dog”), and nothing has been gained
over a system where all responses are
mutually exclusive.

B1VALENT SYSTEMS

In all of the systems analyzed up to
this point, the increments of value
gained by an active A-unit, as a result
of reinforcement or experience, have
always been positive, in the sense that
an active unit has always gained in
its power to activate the responses
to which it is connected. In the
gamma-system, it is true that some
units lose value, but these are always
the ‘mactive umits, the active ones
gaining in proportion to their rate of
activity. In a bivalent system, two
types of reinforcement are possible
(positive and negative), and an active
unit may either gain or lose in value,
depending on the momentary state of
affairs in the system. If the positive
and negative reinforcement can be
controlled by the application of ex-
ternal stimuli, they become essentially
equivalent to “reward” and ‘‘punish-
ment,” and can be used in this sense
by the experimenter. Under these
conditions, a perceptron appears to be
capable of trial-and-error learning. A
bivalent system need not necessarily
involve the application of reward and
punishment, however. If a binary-
coded response system is so organized
that there is a single response or
response-pair to represent each ‘‘bit,”
or stimulus characteristic that is
learned, with positive feedback to its
own source-set if the response is “on,"’
and negative feedback (in the sense
that active A-units will lose rather
than gain in value) if the response is
“off,” then the system is still bivalent
in its characteristics. Such a bivalent
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system is particularly efficient in re-
ducing some of the bias effects (prefer-
ence for the wrong response due to
greater size or frequency of its asso-
ciated stimuli) which plague the alter-
native systems.

Several forms of bivalent systems
have been considered (15, Chap. VII).
The most efficient of these has the
following logical characteristics.

If the system is under a state of
positive reinforcement, then a positive
AV is added to the values of all active
A-units in the source-sets of ‘‘on”
responses, while a negative AV is
added to the active units in the source-
sets of “off'’ responses, If the system
is currently under negative reinforce-
ment, then a negative AV is added to
all active units in the source-set of an
“on' response, and a positive AV is
added to active units in an ‘off”
source-set. If the source-sets are
disjunct (which is essential for this
system to work properly), the equa-
tion for a bivalent y-system has the
same coefficients as the monovalent
a-system, for the u-case (Equation 11).

The performance curves for this
system are shown in Fig. 12, where the
asymptotic generalization probability
attainable by the system is plotted for
the same stimulus parameters that
were used in Fig. 11. This is the
probability that all bits in an n-bit
response pattern will be correct.
Clearly, if a majority of correct re-
sponses is sufficient to identify a stim-
ulus correctly, the performance will be
better than these curves indicate.

In a form of bivalent system which
utilizes more plausible biological as-
sumptions, A-units may be either
excitatory or inhibitory in their effect
on connected responses. A positive
AV in this system corresponds to the
incrementing of an excitatory unit,
while a negative AV corresponds to
the incrementing of an inhibitory unit.
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Such a system performs similarly to
the one considered above, but can be
shown to be less efficient.

Bivalent systems similar to those
illustrated in Fig. 12 have been
simulated in detail in a series of ex-
periments with the IBM 704 computer
at the Cornell Aeronautical Lab-
oratory. The results have borne out
the theory in all of its main predic-
tions, and will be reported separately
at a later time.

IMPROVED PERCEPTRONS AND
SPONTANEOUS ORGANIZATION

The quantitative analysis of per-
ceptron performance in the preceding
sections has omitted any consideration
of time as a stimulus dimension. A
perceptron which has no capability
for temporal pattern recognition is
referred to as a “momentary stimulus
perceptron.” It can be shown (15)
that the same principles of statistical
separability will permit the perceptron
to distinguish velocities, sound se-
quences, etc., provided the stimuli
leave some temporarily persistent
trace, such as an altered threshold,
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which causes the activity in the A-
system at time ¢ to depend to some
degree on the activity at time ¢ — 1.

It has also been assumed that the
origin points of A-units are completely
random. It can be shown that by a
suitable organization of origin points,
in which the spatial distribution is
constrained (as in the projection area
origins shown in Fig. 1), the A-units
will become particularly sensitive to
the location of contours, and perform-
ance will be improved.

In a recent development, which we
hope to report in detail in the near
future, it has been proven that if the
values of the A-units are allowed to
decay at a rate proportional to their
magnitude, a striking new property
emerges: the perceptron becomes cap-
able of “spontaneous” concept forma-
tion. That is to say, if the system is
exposed to a random series of stimuli
from two ‘‘dissimilar’ classes, and all
of its responses are automatically rein-
forced without any regard to whether
they are ‘“right” or ‘‘wrong,” the
system will tend towards a stable
terminal condition in which (for each
binary response) the response will be
“1" for members of one stimulus class,
and “‘0” for members of the other
class; i.e., the perceptron will spon-
taneously recognize the difference
between the two classes. This phe-
nomenon has been successfully dem-
onstrated in simulation experiments,
with the 704 computer.

A perceptron, even with a single
logical level of A-units and response
units, can be shown to have a number
of interesting properties in the field of
selective recall and selective attention.
These properties generally depend on
the intersection of the source sets for
different responses, and are elsewhere
discussed in detail (15). By com-
bining audio and photo inputs, it is
possible to associate sounds, or audi-
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tory ‘‘names’’ to visual objects, and to
get the perceptron to perform such
selective responses as are designated
by the command ‘“Name the object
on the left,”” or “Name the color of
this stimulus.”

The question may well be raised at
this point of where the perceptron’s
capabilities actually stop. We have
seen that the system described is suffi-
cient for pattern recognition, associa-
tive learning, and such cognitive sets
as are necessary for selective attention
and selective recall. The system ap-
pears to be potentially capable of
temporal pattern recognition, as well
as spatial recognition, involving any
sensory modality or combination of
modalities. It can be shown that
with proper reinforcement it will be
capable of trial-and-error learning,
and can learn to emit ordered se-
quences of responses, provided its own
responses are fed back through sensory
channels,

Does this mean that the perceptron s
capable, without further modification
in principle, of such higher order func-
tions as are involved in human speech,
communication, and thinking? Ac-
tually, the limit of the perceptron’s
capabilities seems to lie in the area of
relative judgment, and the abstraction
of relationships. In its “symbolic be-
havior,” the perceptron shows some
striking similarities to Goldstein's
brain-damaged patients (5). Re-
sponses to definite, concrete stimuli
can be learned, even when the proper
response calls for the recognition of a
number of simultaneous qualifying
conditions (such as naming the color
if the stimulus is on the left, the shape
if it is on the right). As soon as the
response calls for the recognition of a
relationship between stimuli (such as
“Name the object left of the square.”
or “Indicate the pattern that appeared
before the circle.”), however, the
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problem generally becomes excessively
difficult for the perceptron. Statis-
tical separability alone does not
provide a sufficient basis for higher
order abstraction. Some system,
more advanced in principle than the
perceptron, seems to be required at
this point.

CONCLUSIONS AND EVALUATION

The main conclusions of the theo-
retical study of the perceptron can be
summarized as follows:

1. In an environment of random
stimuli, a system consisting of ran-
domly connected units, subject to
the parametric constraints discussed
above, can learn to associate specific
responses to specific stimuli. Even if
many stimuli are associated to each
response, they can still be recognized
with a better-than-chance probability,
although they may resemble one an-
other closely and may activate many
of the same sensory inputs to the
system.

2. In such an ‘“ideal environment,”
the probability of a correct response
diminishes towards its original ran-
dom level as the number of stimuli
learned increases.

3. In such an environment, no basis
for generalization exists.

4. In a ‘differentiated environ-
ment,”’ where each response is asso-
ciated to a distinct class of mutually
correlated, or ‘‘similar’’ stimuli, the
probability that a learned association
of some specific stimulus will be cor-
rectly retained typically approaches a
better-than-chance asymptote as the
number of stimuli learned by the
system increases. This asymptote
can be made arbitrarily close to unity
by increasing the number of associa-
tion cells in the system.

5. In the differentiated environ-
ment, the probability that a stimulus
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which has not been seen before will be
correctly recognized and associated to
its appropriate class (the probability
of correct generalization) approaches
the same asymptote as the probability
of a correct response to a previously
reinforced stimulus. This asymptote
will be better than chance if the in-
equality P, < P, < P,y is met, for
the stimulus classes in question.

6. The performance of the system
can be improved by the use of a con-
tour-sensitive projection area, and by
the use of a binary response system,
in which each response, or ‘“bit,”
corresponds to some independent fea-
ture or attribute of the stimulus.

7. Trial-and-error learning is possi-
ble in bivalent reinforcement systems.

8. Temporal organizations of both
stimulus patterns and responses can
be learned by a system which uses
only an extension of the original prin-
ciples of statistical separability, with-
out introducing any major complica-
tions in the organization of the
system.

9. The memory of the perceptron
is distributed, in the sense that any
association may make use of a large
proportion of the cells in the system,
and the removal of a portion of the
association system would not have an
appreciable effect on the performance
of any one discrimination or associa-
tion, but would begin to show up as a
general deficit in g/l learned asso-
ciations.

10. Simple cognitive sets, selective
recall, and spontaneous recognition
of the classes present in a given en-
vironment are possible. The recogni-
tion of relationships in space and time,
however, seems to represent a limit to
the perceptron’s ability to form cog-
nitive abstractions.

Psychologists, and learning theorists
in particular, may now ask: “What
has the present theory accomplished,
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beyond what has already been done in
the quantitative theories of Hull,
Bush and Mosteller, etc., or physio-
logical theories such as Hebb's?” The
present theory is still too primitive, of
course, to be considered as a full-
fledged rival of existing theories of
human learning. Nonetheless, as a
first approximation, its chief accom-
plishment might be stated as follows:

For a given mode of organization
(a, B, Or ; T or u; monovalent or
bivalent) the fundamental phenomena
of learning, perceptual discrimination,
and generalization can be predicted en-
tirely from six basic physical param-
eters, namely :

x: the number of excitatory connec-
tions per A-unit,
v: the number of inhibitory connec-
tions per A-unit,
6: the expected threshold of an A-
unit,
w: the proportion of R-units to
which an A-unit is connected,
N,: the number of A-units in the
system, and
Npg: the number of R-units in the
system.

N, (the number of sensory units) be-
comes important if it is very small.
It is assumed that the system begins
with all units in a uniform state of
value; otherwise the initial value dis-
tribution would also be required.
Each of the above parameters is a clearly
defined physical variable, which is meas-
urable in its own right, independently of
the behavioral and perceptual phe-
nomena which we are trying to predict.

As a direct consequence of its foun-
dation on physical variables, the
present system goes far beyond exist-
ing learning and behavior theories in
three main points: parsimony, veri-
fiability, and explanatory power and
generality. Let us consider each of
these points in turn.
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1. Parsimony. Essentially all of
the basic variables and laws used in
this system are already present in the
structure of physical and biological
science, so that we have found it
necessary to postulate only one hy-
pothetical variable (or construct)
which we have called V, the ‘“‘value”
of an association cell; this is a variable
which must conform to certain func-
tional characteristics which can clearly
be stated, and which is assumed to
have a potentially measurable physical
correlate.

2. Verifiability. Previous quanti-
tative learning theories, apparently
without exception, have had one im-
portant characteristic in common:
they have all been based on measure-
ments of bekavior, in specified situa-
tions, using these measurements (after
theoretical manipulation) to predict
behavior in other situations. Such
a procedure, in the last analysis,
amounts to a process of curve fitting
and extrapolation, in the hope that
the constants which describe one set
of curves will hold good for other
curves in other situations. While
such extrapolation is not necessarily
circular, in the strict sense, it shares
many of the logical difficulties of circu-
larity, particularly when used as an
‘explanation’’ of behavior. Such ex-
trapolation is difficult to justify in a
new situation, and it has been shown
that if the basic constants and param-
eters are to be derived anew for any
situation in which they break down
empirically (such as change from
white rats to humans), then the basic
“theory’ is essentially irrefutable, just
as any successful curve-fitting equa-
tion is irrefutable. It has, in fact,
been widely conceded by psychologists
that there is little point in trying to
“disprove’” any of the major learning
theories in use today, since by exten-
sion, or a change in parameters, they
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have all proved capable of adapting
to any specific empirical data. This
is epitomized in the increasingly com-
mon attitude that a choice of theo-
retical model is mostly a matter of
personal aesthetic preference or pre-
judice, each scientist being entitled to
a favorite model of his own. In con-
sidering this approach, one is reminded
of a remark attributed to Kistiakow-
sky, that *‘given seven parameters, I
could fitan elephant.”” Thisis clearly
not the case with a system in which
the independent variables, or param-
eters, can be measured independently
of the predicted behavior. In such a
system, it is not possible to ‘“force”
a fit to empirical data, if the param-
eters in current use should lead to
improper results. In the current
theory, a failure to fit a curve in a new
situation would be a clear indication
that either the theory or the empirical
measurements are wrong. Conse-
quently, if such a theory does hold up
for repeated tests, we can be consider-
ably more confident of its validity and
of its generality than in the case of a
theory which must be hand-tailored
to meet each situation.

3. Explanatory power and generality.
The present theory, being derived
from basic physical variables, is not
specific to any one organism or learn-
ing situation. It can be generalized
in principle to cover any form of be-
havior in any system for which the
physical parameters are known. A
theory of learning, constructed on
these foundations, should be consider-
ably more powerful than any which
has previously been proposed. It
would not only tell us what behavior
might occur in any known organism,
but would permit the synthesis of
behaving systems, to meet special
requirements. Other learning theo-
ries tend to become increasingly
qualitative as they are generalized.
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Thus a set of equations describing the
effects of reward on T-maze learning
in a white rat reduces simply to a
statement that rewarded behavior
tends to occur with increasing prob-
ability, when we attempt to generalize
it from any species and any situation.
The theory which has been presented
here loses none of its precision through
generality.

The theory proposed by Donald
Hebb (7) attempts to avoid these
difficulties of behavior-based models
by showing how psychological func-
tioning might be derived from neuro-
physiological theory. In his attempt
to achieve this, Hebb’s philosophy of
approach seems close to our own, and
his work has been a source of inspira-
tion for much of what has been pro-
posed here. Hebb, however, has
never actually achieved a model by
which behavior (or any psychological
data) can be predicted from the physio-
logical system. His physiology is
more a suggestion as to the sort of
organic substrate which might under-
lie behavior, and an attempt to show
the plausibility of a bridge between
biophysics and psychology.

The present theory represents the
first actual completion of such a
bridge. Through the use of the
equations in the preceding sections,
it is possible to predict learning curves
from neurological variables, and like-
wise, to predict neurological variables
from learning curves. How well this
bridge stands up to repeated crossings
remains to be seen. In the meantime,
the theory reported here clearly dem-
onstrates the feasibility and fruitful-
ness of a quantitative statistical ap-
proach to the organization of cognitive
systems. By the study of systems
such as the perceptron, it is hoped
that those fundamental laws of organ-
ization which are common to all
information handling systems, ma-
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chines and men included, may even-

tua
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. Havexk, F. A, The sensory order.

lly be understood.
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